Lenz´s law
14 Mar, 2013
Magnet and ring
PRESENTATION: A light aluminum ring is suspended from 2 threads to form a bifilar pendulum. When a potent magnet is approached, currents are induced in the ring and make it be repelled by the magnet. When the magnet is withdrawn the ring tends to approach. The same effect of opposition to movement is observed changing the polarity of the magnet. If there does not exist the movement relative to the ring keeps its balance.
- Another Way to Demonstrate Lenz’s Law, Chang Geng Zhang and Shi Feng Hu, Phys. Teach. 40, 249 (2002)
- A Lenz’s law experiment revisited, Charles A. Sawicki, Phys. Teach. 38, 439 (2000)
INTRODUCTION: At the beginning of the XIXth century, Michael Faraday, a British physicist, and chemist, carried out a series of observations and experiments which showed that under certain conditions, the magnetic fields could generate electric currents in conductors. It was then when he discovered in 1831, the electromagnetic induction. Thus, for instance, connecting a conductor turn to a galvanometer in the presence of a magnet it could be observed (on some given conditions), without the necessity of a generator, which provided electromotive force (e.m.f.).
Heinrich Friedrich Emil Lenz, a German from the Baltic sea, is known for formulating Lenz’s Law in 1833 which says that “the sense of the currents or the induced electromotive force is such that it always opposes the cause that produces it, that is, the variation of the magnetic flux”. Thanks to this law, Faraday’s Law was completed. This is why it is also usual to call it Faraday-Lenz’s law to honor his efforts towards this problem.
OBJECTIVE: To study the behavior produced by the interaction between the magnetic and the electric field.
MATERIALS: copper wire (coil), horizontal bar, rigid stand, bar magnet, crocodile pliers or a flat cable.
SETUP: Surround a coil with 5 turns of wire or copper cable leaving 2 loose coil ends to suspend them from a horizontal bar, which must b fixed to a rigid stand and connect them between themselves by crocodile pliers or a flat cable. The other fundamental part is the magnet, preferably a bar magnet.
EXPLANATION: According to Faraday’s law the e.f.m. induced in a closed coil equals minus the variation with the magnetic flux time though that coil
εind = −d [ΦB (t) / dt]
where the negative sign is a consequence of the Conservation of Energy principle and is reflected in Lenz’s law. In this project the consequence of Lenz’s law is verified, that is, the induced e.f.m. always opposes the change in the magnetic flux, so the coil behaves like an electromagnet which attracts or repels the bar magnet (producing a rocking motion of the coil) in order to always oppose to its movement.
CONCEPTS: Lenz’s law, electromotive law, electromagnetic induction, magnetic field, Faraday-Lenz’s law, electromagnetism.
MORE INFORMATION:
- MAGNETIC MATERIALS
- WIKIPEDIA
- YOUTUBE 1
- YOUTUBE 2
- YOUTUBE 3
- YOUTUBE 4
- YOUTUBE 5
- FISICANET
- ALL ABOUT ELECTRONICS
- INTERACTIVE COURSE
- PHYSLET
TEXTS:
- R. Serway, Física, Mac Graw Hill, 2010.
- P. Tipler, Física para la Ciencia y la tecnología, Reverté, 2012.
- R. Ehrlich, Turning the World Inside Out and 174 Other Simple Physics Demonstrations, Princeton University Press, 1997.
STUDENTS 2011-2012: Cristian Rueda, Álvaro Santiago, Carlos Saso
LINK pdf STUDENTS (in Spanish):
STUDENTS 2010-2011: Rosalía Carrillo, Xeila Casais
LINK pdf STUDENTS (in Spanish):
3 responses to "Lenz´s law"
Me ha parecido muy interesante el último vídeo, ya que los alumnos pueden pensar que el cilindro se ve atraído por tener algún metal ferromagnético. Pero se comprueba que si impedimos que se complete el circuito no se produce el fenómeno de la atracción y repulsión. Yo haría esta demostración en clase.
He encontrado muy interesante también comprobar las diferencias entre el uso de bobinas de distintos números de vueltas y los distintas velocidades de introducir el imán en la bobina, que considero también importante para que los alumnos comprueben por ellos mismos que la intensidad de la corriente eléctrica es tanto mayor cuanto más intenso sea el campo magnético y cuanto más rápido se muevan el imán o la bobina.
+info
El movimiento de un campo magnético en el que se encuentra un conducto (en este caso la bobina) produce electricidad en ese conductor, según la Ley de Faraday. A mayores, la ley de Lenz que dice que un cambio de flujo magnético a través de un conductor siempre establecerá una corriente por el conductor que contrarreste el cambio de flujo, por lo que la bobina se mueve para intentar contrarrestar ese cambio (o movimiento) del campo magnético. Esto está bastante relacionado con el funcionamiento de un freno electromagnético, como se describe en el siguiente blog.
La ley de Faraday-Lenz establece que si un circuito está expuesto a un campo magnético cambiante, se generará una corriente eléctrica en el circuito que tratará de oponerse al cambio del campo magnético. Con la práctica del segundo vídeo, se puede ver claramente este efecto. Variando la velocidad y la dirección del movimiento del imán (incidencia del campo magnético), se modifica la reacción y como consecuencia el movimiento del cubo. En una clase, los alumnos podrían comprobar sus hipótesis sobre la reacción esperada.